Dichotomous Learning Algorithm for the Optimal Design of Weighted Order Statistic Filters

نویسندگان

  • Pao-Ta Yu
  • Chih-Chia Yao
چکیده

Weighted order statistics (WOS) filters are highly effective, in processing digital signals, due to their simple window structure. This paper proposes a fast and efficient learning algorithm that both improves learning speed and reduces the complexity of designing WOS filters. The algorithm uses a dichotomous approach to reduce the Boolean functions from 255 levels to two levels which are separated by an optimal hyperplane. The design concept of this algorithm is similar to that of support vector machines (SVMs), which use two separate sets of data to determine the optimal hyperplane. A conjugate gradient algorithm is adopted, to solve the orthant-constrained optimum problem, in order to improve memory storage for the large amounts of data required in the design process. Prior literature includes three different schemes for learning: one approach updates the parameters via pattern-mode learning, while the others involve batch-mode learning and semi-batch mode learning. Our proposed method approximates the optimal weighted order statistics filters far more rapidly than either Yoo’s algorithm or adaptive neural filters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design of weighted order statistic filters using the perceptron algorithm

In this paper, we observe that the design of optimal weighted order statistic(W0S) filters under the mean absolute error criterion can be thought of as a two-class linear classification problem. Based on this observation, the perceptron algorithm is applied to design WOS filters. It is shown, through experiments, that the perceptron algorithm can find optimal or near optimal WOS filters in prac...

متن کامل

Order Statistic-Based Nonlinear Filters: Stack Filters and Weighted Median Filters - Nonlinear Digital Signal Processing, 1993. IEEE Winter Workshop on

Since the introduction of the median filter by John Tukey in 1971, many important classes of order statistic-based nonlinear filters have bccn developed. In this papcr we review some rcccnt results obtained for the two filter classes known as stack filters and weighted median filters. The highlights include new results on optimal filter design and fast training algorithms. .

متن کامل

A Multi-Objective Particle Swarm Optimization Algorithm for a Possibilistic Open Shop Problem to Minimize Weighted Mean Tardiness and Weighted Mean Completion Times

We consider an open shop scheduling problem. At first, a bi-objective possibilistic mixed-integer programming formulation is developed. The inherent uncertainty in processing times and due dates as fuzzy parameters, machine-dependent setup times and removal times are the special features of this model. The considered bi-objectives are to minimize the weighted mean tardiness and weighted mean co...

متن کامل

OPTIMAL SHAPE DESIGN OF GRAVITY DAMS BASED ON A HYBRID META-HERURISTIC METHOD AND WEIGHTED LEAST SQUARES SUPPORT VECTOR MACHINE

A hybrid meta-heuristic optimization method is introduced to efficiently find the optimal shape of concrete gravity dams including dam-water-foundation rock interaction subjected to earthquake loading. The hybrid meta-heuristic optimization method is based on a hybrid of gravitational search algorithm (GSA) and particle swarm optimization (PSO), which is called GSA-PSO. The operation of GSA-PSO...

متن کامل

Statistical characterization of detail preservation

A novel method of quantifying the level of detail preservation ability of digital filters is proposed. The method assumes only the input distribution of the filter and estimates how much the filter changes the signal. The change is measured by the expectation of the absolute difference between the input and output signal. The method is applicable for many filters and input distributions. As an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Inf. Sci. Eng.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2008